A design methodology for switched discrete time linear systems with applications to automotive roll dynamics control
نویسندگان
چکیده
In this paper we consider the asymptotic stability of a class of discrete-time switching linear systems, where each of the constituent subsystems is Schur stable. We first present an example to motivate our study, which illustrates that the bilinear transform does not preserve the stability of a class of switched linear systems. Consequently, continuous time stability results cannot be transformed to discrete time analogs using this transformation. We then present a subclass of discrete-time switching systems, that arise frequently in practical applications. We prove that global attractivity for this subclass can be obtained without requiring the existence of a common quadratic Lyapunov function (CQLF). Using this result we present a synthesis procedure to construct switching stabilizing controllers for an automotive control problem, which is related to the stabilization of a vehicle’s roll dynamics subject to switches in the center of gravity (CG) height.
منابع مشابه
A new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem
Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...
متن کاملEigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملEnhancement of Articulated Heavy Vehicle Stability by Optimal Linear Quadratic Regulator (LQR) Controller of Roll-yaw Dynamics
Non-linear characteristic of tire forces is the main cause of vehicle lateral dynamics instability, while direct yaw moment control is an effective method to recover the vehicle stability. In this paper, an optimal linear quadratic regulator (LQR) controller for roll-yaw dynamics to articulated heavy vehicles is developed. For this purpose, the equations of motion obtained by the MATLAB sof...
متن کاملDesign and Implementation of Discrete Time Observer Based Backstepping Controller for a 2DOF Servomechanism
The two degrees of freedom servomechanism has many applications, including in gimbaled seekers. These mechanisms require closed-loop control to perform properly. In this paper, an observer-based multi-input-multi-output hybrid controller is designed for a two-degree-of-freedom servomechanism. Since in the model presented in this paper, disturbances on the mechanism are considered, so an extende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 44 شماره
صفحات -
تاریخ انتشار 2008